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there is a growing imperative to explore and estab-
lish more sustainable production processes that utilize 
renewable resources to produce aromatic compounds. 
The global aromatics manufacturing market size value 
was 233.6 billion US$ in 2021 and has been anticipated to 
reach 382.4 billion US$ by 2030 [4].

Aromatic compounds are characterized by flat, conju-
gated six-carbon cyclic structures. Prokaryotes, micro-
bial eukaryotes, and plants produce aromatic compounds 
via the ubiquitous shikimate pathway. Some aromatic 
compounds such as aromatic amino acids, ubiquinone, 
and vitamin K are vital to all species’ cellular metabo-
lism [5]. The metabolism of aromatic compounds is, 
however, still not fully understood. Notably, the degra-
dation of lignin and lignin-derived aromatic compounds 
has been studied quite extensively, also in filamentous 
fungi. Lignin is the second most abundant plant biomass 
on earth and comprises various aromatic molecules. 

Introduction
Aromatic compounds are widely used for diverse indus-
trial applications, ranging from pharmaceuticals, fra-
grances, pigments, and flavors to bio-based polymers 
and specialty chemicals [1]. Traditionally aromatic com-
pounds are derived from petroleum and their production 
is associated with environmental concerns and limited 
sustainability [2]. While some aromatic compounds can 
be extracted from plants, this is often hampered by low 
yields and expensive downstream processes [3]. Hence, 
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Valorization of lignin in biorefinery efforts has gained a 
lot of attention but remains technically challenging [6]. 
So-called white-rot fungi, a heterogeneous group of the 
basidiomycetes division, can naturally degrade lignin 
into various aromatic chemicals using laccases. In addi-
tion, some brown-rot fungi have been shown to modify 
lignin-derived compounds, but only a few brown rot lac-
cases have thus far been characterized [7]. Heterologous 
laccases have successfully been expressed in well-estab-
lished cell factories such as Trichoderma reesei [6, 7]. 
While soft rot fungi of the ascomycetes division to which 
T. reesei belongs, are well-known to break down cellulose 
and hemi-cellulose from biomass, less is known about 
their potential for degrading or modifying lignin derived 
compounds. Microbial breakdown of lignin results in a 
variety of aromatic compounds. Consequently, there is 
a need to engineer effective microbial platforms that can 
channel these aromatic compounds into a target prod-
uct. A few recent studies have focused on conversion of 
lignin derived, aromatic compounds into distinct, more 
valuable molecules, namely vanillic acid, methoxyhydro-
quinone or protocatechuic acid by Aspergillus niger [8, 
9]. These studies showcase the potential of established 
fungal cell factories for aromatic compound production. 
Importantly, CRISPR/Cas based genome engineering 
has now made an increasing number of fungal species 
genetically accessible. This not only diversifies the range 
of potential production hosts but also expands the fungal 
product portfolio.

Filamentous fungi have long been exploited for the pro-
duction of e.g. enzymes and various secondary metabo-
lites, not the least for the production of antibiotics and 

other bioactive compounds. Lately, the interest in fun-
gal pigments as natural coloring alternatives has gained 
increased attention. Many interesting fungal pigments 
are flavonoids, alkaloids, quinones or similar aromatic 
compounds that are derived from the shikimate pathway 
[10]. In addition to being used as food or textile colo-
rants, many pigments also find applications in pharma-
ceuticals or cosmetics. Substantial efforts have been put 
into isolating fungi that naturally produce pigments, but 
achieving high enough yield, stability, and purity of natu-
rally produced fungal pigments remains challenging [11]. 
In this review, we highlight fungal production of aro-
matic compounds with a focus on those derived from the 
shikimate pathway. Given the current interest in the bio-
refinery concept, we also describe conversion of aromatic 
compounds derived from lignin.

The shikimate pathway – the aromatic compounds 
synthesis route
The shikimate pathway for de novo synthesis of aromatic 
compounds is well conserved among microorganisms 
(Fig.  1) [12]. It is composed of seven cytosolic reac-
tions that combine phosphoenolpyruvate (PEP) from 
the Embden-Meyerhof-Parnas pathway and erythrose 
4-phosphate (E4P) from the pentose phosphate path-
way to chorismate. The first reaction in the shikimate 
pathway is the condensation of E4P and PEP to generate 
3-deoxy-D-arabino-heptulosonate-7-phosphate (DAHP). 
In fungi, the DAHP synthase activity that accelerates the 
input reaction is under tight feedback regulation, con-
trolled by the aromatic amino acids, namely phenylala-
nine, tyrosine, or tryptophan that are end products of the 

Fig. 1 Enzymes and metabolites of the shikimate pathway in fungi. The first and last step in the shikimate pathway is catalyzed by 3-deoxy-D-arabino-
heptulosonate-7-phosphate synthase (DAHPS) and chorismate synthase (CS). The AROM pentafunctional polypeptide catalyzes five steps in the shiki-
mate pathway converting 3-deoxy-D-arabino-heptulosonate-7-phosphate to 5-enolpyruvylshikimate 3-phosphate, indicated in grey. The domains of 
AROM are the following: 3-dehydroquinate synthase (DHQS), 3-dehydroquinate dehydratase (DHQD), shikimate dehydrogenase (SDH), shikimate kinase 
(SK) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS)
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shikimate pathway. In Neurospora crassa, three DAHP 
synthase isoenzymes have been identified, each regulated 
by one of the aromatic amino acids [13]. In Aspergillus 
nidulans, two DAHP synthases have been isolated, and 
tyrosine was shown to be a competitive inhibitor of its 
aroF DAHP synthase [14].

While bacteria express separate enzymes for each reac-
tion of the shikimate pathway, in fungi (and protists) 
the AROM multifunctional enzyme catalyzes five cen-
tral reactions, i.e., the second to sixth step for DAHP to 
5-enolpyruvylshikimate 3-phosphate (EPSP) conversion 
(Fig.  1). The AROM protein appears to be the result of 
gene fusions resulting in a mosaic pentafunctional poly-
peptide encoded by a single gene that is well conserved 
across fungal species [15]. The AROM protein of A. nidu-
lans [16] (encoded by AroM) has been characterized and 
AROM homologous are found in other fungi; encoded 
by aro-1 in N. crassa, by ARO1 in T. reesei and by 
FOXG_13955P0 in Fusarium oxysporum to name a few 
[17, 18]. Overexpression of the two C-terminal domains 
of the AROM protein [19] as well as the whole AROM 
protein has been demonstrated in A. nidulans [20, 21]. 
The AROM protein is recognized to be ‘leaky’, allowing 
branching at intermediate steps within the pathway [22]. 
Therefore, each intermediate within the shikimate path-
way can also serve as a branchpoint for the biosynthesis 
of specialized metabolites. The shikimate pathway ends 
in the conversion of EPSP to chorismate, the precursor 
for the aromatic amino acids.

Production of shikimate pathway derived compounds
The shikimate pathway is responsible for the production 
of aromatic amino acids and a diverse array of other mol-
ecules. This includes precursors for essential processes 
e.g. isoprenoid quinones which serve important roles in 
electron transport and as antioxidants [23]. Aromatic 
amino acids are used for protein synthesis but also incor-
porated into co-factors, peptides, pigments, alkaloids and 
organic polymers. The flux through the shikimate path-
way is tightly regulated, thus not typically resulting in 
the accumulation of high amounts of intermediates. Still, 
some fungi are known to accumulate shikimate pathway 
derived aromatic chemicals.

Trichoderma ovalisporum [24], Penicillium griseoful-
vum [25] and Fusarium decemcellulare [26] have been 
reported to produce shikimic acid. The accumulation of 
shikimic acid in the oyster mushroom (Pleurotus ostrea-
tus) was reported to increase upon blue light stimula-
tion, leading to increased amounts of rate-determining 
enzymes that resulted in increased amounts of shiki-
mate pathway entry compounds [27]. While metabolic 
engineering to increase shikimate accumulation has 
been described for various bacteria and yeast, such 
attempts have to our knowledge not yet been reported 

for filamentous fungi. Shikimate, today extracted from 
certain plants or produced by genetically engineered 
Escherichia coli, can be used in the assembly of various 
bioactive compounds including for production of the 
viral neuraminidase inhibitor oseltamivir (Tamiflu®) [28]. 
Tamiflu® is an antiviral compound used in the prevention 
and treatment of Type A and Type B influenza infections 
[29]. Initially Tamiflu® was produced from quinic acid, a 
derivative of 3-dehydroquinate that is an intermediate of 
the shikimate pathway [30]. Quinic acid is a cyclic poly-
hydroxy compound used as food additive, cosolvent or 
as an optical material and finds various application in the 
medical industry [31]. Certain filamentous fungi, such as 
Aspergillus spp. and N. crassa can use quinic acid (or its 
salt, quinate) as a sole carbon source to produce aromatic 
amino acids through the shikimate pathway [29]. A. niger 
has been reported to produce quinic acid and caffeic 
acid by hydrolysis of chlorogenic acid, that is abundant 
in industrial by-products such as apple marc and coffee 
pulp [32].

Notably, several recent studies have focused on devel-
oping fungal biorefinery schemes to produce aromatic 
compounds from agro-industrial residues. The pro-
duction of gallic acid from tannic acid by A. niger and 
Aspergillus oryzae was demonstrated in solid-state fer-
mentation of soybean hull and grape pomace [33]. In this 
study, A. oryzae produced 0.36 g of gallic acid/g of tan-
nic acid and reached a titer of 7.2  g/L in 72  h. A. niger 
was reported to produce gallic acid using lye and washing 
water effluents from green olive processing enriched with 
tannic acid [34]. Moreover, gallic acid production from 
tannic acid containing pomegranate peels using tannases 
extracted from a co-culture of A. niger and Trichoderma 
viride has been reported [35]. Gallic acid is typically pro-
duced through acid hydrolysis of tannic acid, which is 
rather costly due to low yields and purity [36]. Microbes 
can produce gallic acid through dehydrogenation of 
3-dehydroshikimic acid [37], the precursor of shikimate. 
Gallic acid is an important pharmaceutical intermedi-
ate due to its potent antioxidant and anti-inflammatory 
activity. The current gallic acid demand exceeds 10,000 
tons per year [35]. A conversion of 71.4% tannic acid to 
gallic acid was reported using Aspergillus fischeri as the 
cell factory [36]. A. fischeri produced 7.35 g gallic acid/g 
biomass when tannic acid was the sole carbon source 
[36]. A. niger was reported to produce 36 g/l gallic acid 
when supplemented with 100  g/l tannic acid [34]. Phy-
comyces blakesleeanus was reported to produce small 
amounts of gallic acid when grown on glucose [37]. In 
comparison, a production of 51.57 g/L of gallic acid with 
a yield of 0.45 g/g glucose and a productivity of 1.07 g/L/h 
was demonstrated with recombinant E. coli demonstrat-
ing that screening efficient pathway enzymes, balancing 
the carbon flux and strengthening the shikimate pathway 
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can lead to great improvements in efficiency [38]. Such 
efforts would need to be made in order to develop 
improved fungal cell factories for the production of aro-
matic chemicals and to expand the product range.

Production of chorismate and aromatic amino acid derived 
compounds
The shikimate pathway ends in the formation of choris-
mate (Fig. 1). Chorismate is the substrate of five distinct 
enzymes, responsible for the production of prephenate, 
anthranilate, aminodeoxychorismate, p-hydroxybenzoate 
and isochorismate [39] (Fig. 2). These metabolites serve 
as intermediates for the synthesis of folate, ubiquinone, 
menaquinones, salicylic acid and enterobactin, as well 
as aromatic amino acids such as phenylalanine, tyrosine, 
tryptophan [40]. Aromatic amino acids are today com-
mercially produced through chemical synthesis or bac-
terial fermentation. The production strains have been 
developed through classical strain improvement or meta-
bolic engineering for increased shikimate pathway flux. 
Such efforts have not yet been reported for fungi. None-
theless, a recent study highlighted tyrosine production 
with a new isolate of Rhizopus oryzae [41].

Tyrosine biotransformation to 3,4-dihydroxyphenylala-
nine (L-Dopa) has been achieved by A. niger [42]. More-
over, enzymatic conversion of tyrosine to L-Dopa using 
immobilized tyrosinase originating from mushrooms was 
demonstrated in a continuous membrane reactor [43]. 
L-Dopa is used as a drug for Parkinson’s disease [44], 

today commonly produced chemically, using environ-
mentally unfriendly catalysts [43]. The biotechnological 
synthesis of L-Dopa using the bacterium Erwinia herbi-
cola was commercialized already in 1993, but the current 
production scheme has been reported to be challenged 
by poor productivity [45].

The conversion of tryptophan to 2,3-dihydroxybenzo-
ate and further to catechol was noted in A. niger [46]. 
Hydroxylation of salicylate to 2,3-dihydroxybenzoate was 
observed in A. niger, A. nidulans, and Trichoderma lig-
norum [47]. Enzymatic cleavage of the aromatic ring of 
catechol using catechol 1,2-dioxygenase (CrcA) to form 
cis, cis-muconic acid was demonstrated in A. niger [47]. 
Efficient conversion of salicylic acid into cis, cis-muconic 
acid through catechol as an intermediate, has been 
shown in A. niger through the concerted action of recom-
binant salicylate hydroxylase (ShyA) and CrcA [47]. Cis, 
cis-muconic acid can be used for production of adipic 
acid and terephthalic acid, which find applications in 
food, medicines, cosmetics, and textiles [48]. Catechol is 
a commercially significant aromatic compound, used as a 
precursor for artificial fragrances and flavors [49].

Filamentous fungi are widely known to produce sec-
ondary metabolites using non-ribosomal peptide syn-
thetases that condensate amino acids and other small 
monomers into larger bioactive compounds such as 
alkaloids and siderophores. Many ascomycota such as 
Aspergillus, Fusarium, Penicillium and Trichoderma 
spp. showcase a notable abundance of tryptophan and 

Fig. 2 Examples of fungal aromatic compounds produced from the shikimate pathway
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anthranilate-derived alkaloids [50]. Chorismate also 
serves as the precursor for a broad array of polyketides, 
including macrolides and strobilurins [51]. Fungal mac-
rolides possess antifungal or antibiotic properties and 
are utilized in antimicrobial therapy [52]. Strobilurins 
are antifungal metabolites isolated from various basid-
iomycota that are used in fungicides for crop protec-
tion [53]. Furthermore, chorismate is the precursor for 
many aromatic pigments, including various quinones, 
alkaloids, flavonoids and folates. For a review on pig-
ment synthesis in filamentous fungi we refer to Kalra et 
al. 2020 [11]. Recently, several start-ups focused on pig-
ment production using fungi as production hosts have 
emerged, including Chromologics and Michroma to 
name a couple.

Production of lignin-derived aromatic compounds
Lignin is a complex and highly heterogeneous aromatic 
biopolymer comprising three primary hydroxycinnam-
oyl alcohol monomers: coumaryl alcohol (H-unit), sina-
pyl alcohol (S-unit), and coniferyl alcohol (G-unit) [54]. 
Depolymerization of lignin, with its intricate structure, 
presents a great hurdle in the conversion of lignin into 
value-added compounds. In this regard, various fungi 
stand out as effective lignin-degrading microorgan-
isms due to their capacity of secreting lignin-degrading 
enzymes, that break down the lignin polymer into mono-
mers. The fungal aromatic compounds metabolism is 
very diverse and still today not fully elucidated. Notably, 

specific parts of aromatic metabolism have been studied 
in a variety of fungi and diversity among species is to be 
expected (Fig.  3). A detailed comparison between the 
aromatic metabolism of fungi and that of bacteria was 
published some years back [55]; for a review on aromatic 
metabolism of filamentous fungi we refer to Mäkelä et al. 
[56].

Aromatic compounds produced from coumaryl alcohol 
(H-lignin)
Many fungi can convert p-coumaryl alcohol to p-cou-
maric acid (4-hydroxycinnamic acid) that can be metabo-
lized to p-hydroxybenzoic acid (4-hydroxybenzoic acid) 
and further to phenolic acids such as protocatechuic 
acid, hydroxyquinol, hydroxyquinone, gentisic acid and 
catechol [55]. The conversion of p-coumaric acid to caf-
feic acid has been observed for several fungi, including 
the Pycnoporus cinnabarinus, Gliocladium deliquescens 
and several Aspergilli, but the underlying metabolic 
pathway(s) is still to be discovered [55, 57]. Biotransfor-
mation of p-coumaric acid into caffeic acid with a molar 
yield of 21% was demonstrated with P. cinnabarinus [57]. 
Caffeic acid has a range of interesting biological activi-
ties, and the compound can be used as a precursor for 
e.g. flavoring agents and in the production of plastics and 
rubbers [58]. Today, caffeic acid is extracted from plants 
and has a growing market.

Schizophyllum commune was reported to trans-
form p-coumaric acid into p-hydroxybenzoic acid [59]. 

Fig. 3 Examples of aromatic and aromatic-derived compounds obtained from lignin degradation. Structures adapted from Lubbers et al. [55]
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In Paecilomyces variotii degradation of p-coumaric 
acid resulted in the synthesis of p-hydroxybenzoic 
acid, p-hydroxybenzaldehyde and protocatechuic acid 
(3,4-dihydroxybenzoic acid) [60]. Deletion of phyA and 
prcA, encoding a protocatechuate hydroxylase and a 
protocatechuate 3,4-dioxygenase, resulted in accumula-
tion of protocatechuic acid in A. niger grown on different 
H-lignin related aromatic compounds [9]. Protocatechuic 
acid is a chemical building block for polymers and plas-
tics that also has interesting pharmaceutical proper-
ties [9]. The so-called protocatechuate branch of the 
β-ketoadipate pathway was recently described in A. niger 
[61]. This pathway, consisting of five enzymes, converts 
protocatechuic acid into β-ketoadipic acid, that can be 
further metabolized to acetyl-CoA and succinyl-CoA. 
β-ketoadipic functions as a building block for nylon-6,6 
analogs. Deletion of the β-ketoadipate-CoA transferase, 
led to β-ketoadipate accumulation when A. niger was 
grown on quinic acid [61]. Protocatechuate metabo-
lism through the β-ketoadipate pathway has also been 
reported for N. crassa [62] and A. nidulans [63].

Aromatic compounds produced from coniferyl alcohol 
(G-lignin)
Coniferyl alcohol is used as a precursor for the biosyn-
thesis of silymarin, ferulic acid, and vanillin [54, 64]. 
Silymarin is a mixture of flavonolignan and flavonoid 
polyphenolic compounds that exhibit various benefi-
cial properties including antioxidant, anti-inflammatory, 
anti-cancer, and anti-viral activities, making these com-
pounds potentially useful in the treatment of various 
liver and neurodegenerative disorders [65]. Ferulic acid 
(4-hydroxy-3-methoxycinnamic acid) has a wide range 
of applications in the pharmaceutical industry because 
of its antioxidant, anti-inflammatory, cholesterol-lower-
ing, anti-cancer, and antimicrobial properties [66]. In the 
food industry, it is used as a preservative and as a precur-
sor for vanillin production.

Vanillin is a popular flavor and fragrance compound 
extensively utilized in the food, beverage, cosmetic, and 
pharmaceutical industries [67]. Vanillin has been pro-
duced from ferulic acid in Aspergillus luchuensis [68]. 
Vanillin derivatives like vanillic acid and methoxyhydro-
quinone find applications in polymer production, such 
as epoxy resins [69]. The white rot fungi S. commune and 
Sporotrichum pulverulentum were reported to transiently 
accumulate vanillic acid during ferulic acid degradation 
[56, 70]. Similarly, in Myceliophthora thermophila, the 
decarboxylation of ferulic acid to p-vinylguaiacol resulted 
in the synthesis of vanillic acid. The conversion of ferulic 
acid into vanillic acid has also been observed in a range 
of ascomycota, namely in A. niger and Botrytis, Cephalo-
sporium, Penicillium, Trichoderma, and Verticillium spp. 

[55]. P. cinnabarinus can degrade ferulic acid into vanillin 
[71, 72].

Both vanillic and isovanillic acid are produced dur-
ing lignin degradation of spruce wood in Phanerochaete 
chrysosporium [73]. A range of fungi, including Asper-
gillus japonicus and S. commune have been reported to 
demethylate vanillic acid to protocatechuic acid [74–76]. 
Non-oxidative decarboxylation of vanillic acid to guaia-
col was reported for P. variotii, M. thermophila and some 
Aspergilli [76, 77]. Guaiacol serves as a flavoring agent 
and guaiacol also has diverse pharmaceutical applications 
[78]. The biotransformation of vanillic acid into vanillin 
has been documented in numerous filamentous fungi, 
including, P. cinnabarinus and T. reesei [76, 79]. Some 
filamentous fungi such as, A. japonicus, P. cinnabarinus 
and S. commune oxidize vanillin to vanillic acid [70, 74, 
80]. Similarly, oxidation of vanillyl alcohol to vanillin was 
observed in A. japonicus, S. commune, Penicillium sim-
plicissimum and S. pulverulentum [74, 75, 81, 82]. Con-
versely, conversion of vanillin to vanillic acid and partially 
to vanillyl alcohol has been reported for Polystictus ver-
sicolor, P. cinnabarinus, S. pulverulentum and Fomitopsis 
palustris [75, 79, 81, 83]. While numerous reaction path-
ways for the conversion of vanillin have been reported, 
only one vanillin converting enzyme, VaO, found in P. 
simplicissimum, has been characterized thus far [84].

Many of the enzymatic reactions for conversion of 
aromatic compounds are reversible. P. cinnabarinus, 
and P. simplicissimum have been reported to produce 
coniferyl alcohol from ferulic acid and eugenol, respec-
tively [79, 82]. Eugenol, a highly biologically active com-
pound found in essential plant oils was reported to be 
converted into p-vinylguaiacol by S. commune, P. variotii 
and Fusarium solani [77, 85, 86]. p-vinylguaiacol is a vol-
atile phenolic compound known for its tobacco flavour, 
a molecule that is used both as a flavour and as a phar-
maceutical intermediate [87]. Trametes spp. have been 
reported to reduce ferulic acid to coniferyl aldehyde and 
coniferyl alcohol, and to synthesize vanillic acid, vanillyl 
alcohol, and methoxyhydroquinone [56, 88]. In Lentinula 
edodes, ferulic acid was reported to be hydroxylated to 
5-hydroxyferulic acid and further to 3,4,5-trihydroxy-
cinnamic acid, a compound with anti-inflammatory and 
antioxidant activities [89]. In Penicillium rubens, ferulic 
acid was shown to be demethylated to caffeic acid and 
further to protocatechuic acid [90].

Aromatic compounds produced from sinapyl alcohol 
(S-lignin)
Sinapyl alcohol contains two methoxy groups, which 
makes it more recalcitrant compared to the G- and 
H-lignin [54]. Some fungi can convert sinapyl alcohol 
into sinapic acid (3,5-dimethoxy-4-hydroxycinnamic 
acid). Sinapic acid and some of its derivatives, including 
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sinapine, 4-vinylsyringol, sinapoyl esters, and syringalde-
hyde, have gained attention due to their diverse biological 
activities which encompass antimicrobial, antioxidant, 
anticancer, anti-inflammatory, and anti-anxiety proper-
ties [91]. P. variotii was reported to convert sinapic acid 
into syringaldehyde and syringic acid [92]. The demeth-
ylation of syringic acid to 3-o-methylgallic acid has been 
documented for P. variotii, P. chrysosporium and S. pul-
verulentum [92, 93]. On the contrary, S. pulverulentum, 
Petriellidium boydii, and Phialophora mutabilis have 
been observed to produce 3,4,5-trimethoxybenzoic acid 
through syringic acid methylation [93]. 3,4,5-trime-
thoxybenzoic acid is an antioxidant and a building block 
compound used in organic synthesis for medical appli-
cations. P. ostreatus has been demonstrated to oxidize 
syringic acid to 2,6-di-methoxy-1,4-hydroquinone and 
2,6-di-methoxy-1,4-benzoquinone but also to decar-
boxylate syringic acid to 2,6-dimethoxyphenol [94]. 
2,6-dimethoxyphenol possesses antioxidant properties 
and is used in the pharmaceutical industry [95].

Conclusions and future perspectives
While filamentous fungi have been recognized to play a 
crucial role in the transition to a circular economy [96], 
the potential of aromatic chemicals production with 
fungi remains yet to be realized (Fig. 4). Published work 
typically reports conversion of one aromatic chemical 
to another, more valuable compound. Examples of such 
include tyrosine biotransformation to L-Dopa, conver-
sion of p-coumaric acid to caffeic acid and conversion 
of ferulic acid to vanillin. Biorefinery initiatives aimed at 
adding value to industrial side-streams illustrate oppor-
tunities such as converting tannic acid into gallic acid, a 
process successfully achieved using various fungi. Chan-
neling the production into a specific compound of inter-
est and/or required downstream processes to ensure a 
pure compound are however known to be challenging, 
especially when a complex biomass is used as feedstock. 
Unspecific enzymatic and spontaneous reactions within 
the cells are also to be considered. Enzyme engineering 
or generation of new enzymes with the help of machine 
learning are promising future opportunities for improv-
ing pathway fluxes and creating new production routes 
[97]. Furthermore, metabolic models could be exploited 
to better understand fungal metabolism and how it could 

Fig. 4 Overview of the possible drivers to enhance aromatic compound production in filamentous fungi. Production of fungal based aromatic com-
pounds from renewable biomass finds diverse industrial applications and could be part of a circular economy
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be altered for increased production. Metabolic mod-
els exist for several filamentous fungi and de novo con-
struction of genome scale metabolic models is today 
rather straight forward. In recent years, machine learn-
ing methods that facilitate the reconstruction of enzyme-
constrained models have appeared [98]. Still, the usability 
of metabolic models may be constrained by the lack of 
accurate data. Cultivation of filamentous fungi in con-
trolled conditions to establish accurate measurements 
of growth and production can be a challenge on its own. 
While domesticated model fungi can grow very homog-
enously in submerged culture many filamentous fungi 
fail to do so. The ongoing digital transformation of the 
biomanufacturing industry has sparked increased inter-
est in automating fungi-based systems, but further devel-
opments, such as new analytic equipment (sensors) and 
control systems are needed to advance the field [99]. The 
collection of real-time data and creation of digital twins 
of fungal bioprocesses has the potential to identify pro-
duction bottlenecks and create novel understanding of 
fungal metabolism.

Many of the reaction steps in the aromatic metabo-
lism of fungi remains to be elucidated but the known 
pathways, including the shikimate pathway and the 
β-ketoadipate pathway appear to be well conserved 
across fungal species. The rapidly increasing number of 
sequenced fungi and the progress in gene annotation and 
enzyme function prediction can nonetheless be expected 
to pave the way for a greater understanding of fungal 
aromatic compound metabolism. Genetic engineering 
for improving aromatic chemicals production or prod-
uct spectrum is not yet widely practiced in filamentous 
fungi. A few earlier studies report the successful engi-
neering of the shikimate pathway in filamentous fungi, 
through overexpression of, or modification of the AROM 
pentapeptide [19–21]. The AROM enzyme is known to 
be subjected to tight feedback control and releasing this 
through targeted mutagenesis has in other species been 
a very successful strategy for increasing the flux through 
the shikimate pathway [100]. Filamentous fungi as pro-
duction hosts would provide great benefits, such as the 
ability to transform and metabolize recalcitrant bio-
masses and lignin, which lessens the necessity for costly 
pre-treatments and increases carbon conversion efficacy. 
This, in combination with the recent advances in fungal 
engineering tools, namely CRISPR/Cas-based systems, 
leads to a significant potential for leveraging fungi in the 
synthesis of aromatic compounds.
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