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Abstract
Background  Penicillium digitatum is a fungal plant pathogen that causes the green mold disease in harvested citrus 
fruits. Due to its economical relevance, many efforts have focused on the development of genetic engineering tools 
for this fungus. Adaptation of the CRISPR/Cas9 technology was previously accomplished with self-replicative AMA1-
based plasmids for marker-free gene editing, but the resulting efficiency (10%) limited its practical implementation. In 
this study, we aimed to enhance the efficiency of the CRISPR/Cas9-mediated gene editing in P. digitatum to facilitate 
its practical use.

Results  Increasing the culture time by performing additional culture streaks under selection conditions in a medium 
that promotes slower growth rates significantly improved the gene editing efficiency in P. digitatum up to 54–83%. 
To prove this, we disrupted five candidate genes that were chosen based on our previous high-throughput gene 
expression studies aimed at elucidating the transcriptomic response of P. digitatum to the antifungal protein PdAfpB. 
Two of these genes lead to visual phenotypic changes (PDIG_53730/pksP, and PDIG_54100/arp2) and allowed to start 
the protocol optimization. The other three candidates (PDIG_56860, PDIG_33760/rodA and PDIG_68680/dfg5) had no 
visually associated phenotype and were targeted to confirm the high efficiency of the protocol.

Conclusion  Genome editing efficiency of P. digitatum was significantly increased from 10% to up to 83% through 
the modification of the selection methodology, which demonstrates the feasibility of the CRISPR/Cas9 system for 
gene disruption in this phytopathogenic fungus. Moreover, the approach described in this study might help increase 
CRISPR/Cas9 gene editing efficiencies in other economically relevant fungal species for which editing efficiency via 
CRISPR/Cas9 is still low.

Keywords  Filamentous fungi, Gene targeting, Episomal expression vector, Non-model fungi

Increasing the efficiency of CRISPR/Cas9-
mediated genome editing in the citrus 
postharvest pathogen Penicillium digitatum
Carolina Ropero-Pérez1, Jose F. Marcos1, Paloma Manzanares1 and Sandra Garrigues1*

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s40694-024-00179-0&domain=pdf&date_stamp=2024-7-12


Page 2 of 11Ropero-Pérez et al. Fungal Biology and Biotechnology            (2024) 11:8 

Background
Filamentous fungi are a major threat to human and ani-
mal health, crop production and food safety [1]. How-
ever, fungi can also serve as eukaryotic models in both 
fundamental and applied research and as biofactories 
for the biotechnological production of a broad source of 
metabolites, enzymes and other proteins of commercial 
applications [2]. In this context, genetic and metabolic 
engineering are effective technologies for elucidating 
gene function and also increasing production levels while 
minimizing unwanted by-products.

Penicillium digitatum is a fungal plant pathogen that 
causes the green mold disease in harvested citrus fruits, 
producing very important economic losses worldwide 
[3]. Additionally, P. digitatum has been demonstrated as 
an efficient fungal cell factory for the homologous and 
heterologous production of the so-called fungal antifun-
gal proteins (AFPs) [4, 5] and other cysteine-rich proteins 
[6]. Therefore, due to the economic and social relevance 
of this fungus, many efforts have focused on the char-
acterization of the genetic and molecular mechanisms 
involved in its pathogenicity and virulence, resistance to 
antifungal compounds and protein production [4, 6–16].

One of the limiting factors for effectively disrupting 
genes in filamentous fungi, including P. digitatum, has 
traditionally been low frequencies of homologous recom-
bination (HR) at a target locus [17]. A breakthrough that 
improved homology recombination rates in (some) fungi 
evolved through the disruption of genes involved in the 
non-homologous end joining (NHEJ) DNA repair path-
way by ku70 and/or ku80 gene knock-down. However, 
this approach is far from being optimal, since in some 
cases the inactivation of NHEJ has been associated with 
increased vulnerability to DNA damaging and decreased 
strain fitness [18]. In P. digitatum, ku70 deletion facili-
tates homologous recombination but at the expense of 
increasing the temperature sensitivity of the fungus, 
which results in a detrimental effect in axenic growth and 
conidia production [4]. Thus, the utilization of P. digita-
tum NHEJ-deficient strains does not seem to be the most 
appropriate approach to further develop this fungus for 
biotechnological purposes.

Lately, the CRISPR/Cas9 technology has emerged as a 
cutting-edge genome editing tool to overcome the low 
homologous integration frequencies of filamentous fungi 
[19]. The Cas9 endonuclease, driven to target genes by a 
single guide RNA (sgRNA) that forms a sequence-specific 
RNA complex, produces double-strand breaks (DSBs) 
that induce the NHEJ response for their repair. In this 
process, random mutations can be introduced, leading 
to frameshift variants that produce non-sense sequences 
or premature stops codons, hence blocking the proper 
translation of the mRNA [20]. Recently, our group has 
successfully implemented this technology in P. digitatum 

with a reported genome editing efficiency of 10% by using 
non-integrative AMA1-based self-replicating plasmids 
that contain the required CRISPR/Cas9 machinery [21]. 
After DNA editing, the subsequent curing of the plas-
mid renders a marker-free strain that can be subjected to 
successive rounds of mutation. However, the editing rate 
remains low for practical purposes, and an optimization 
of the already described protocol for the efficient genetic 
modification of P. digitatum through CRISPR technol-
ogy is urgently needed. In this study, we show increased 
genome editing efficiency of P. digitatum wild-type strain 
from the previously reported efficiency rate of 10% to up 
to 83% by means of modifying the transformant selection 
methodology. The optimized protocol for the efficient 
CRISPR/Cas9-mediated genome editing in P. digitatum 
is presented and discussed.

Results and discussion
The application of the CRISPR/Cas9 technology has been 
demonstrated in filamentous fungi, [22–24] with very 
different degrees of genome editing efficiencies, rang-
ing from 1% in Aspergillus carbonarius [25] up to almost 
100% efficiency in Aspergillus niger [26, 27]. In the phyto-
pathogenic fungus P. digitatum, the CRISPR/Cas9 system 
has been demonstrated for the first time by our group, 
but with genome editing efficiencies of just 10% [21], 
which we consider an important limiting factor for the 
efficient genetic modification of the fungus. Therefore, 
protocol optimization for CRISPR/Cas9 gene editing in P. 
digitatum is required.

The modification of genes that lead to visual pheno-
typic changes such as color change or (in)ability to grow 
on several substrates easily leads to the identification of 
the colonies that underwent the genetic modification 
by visual inspection directly on the transformation and/
or selection plates. This was the strategy of choice while 
implementing the CRISPR/Cas9 technology in P. digi-
tatum for the first time [21]. In this previous work, we 
targeted the wetA gene, which encodes a conidiophore 
development-related transcription factor whose dis-
ruption generated white, cotton-like mutant colonies 
[21, 28]. However, genetic modification of the major-
ity of genes present in a fungal organism does not lead 
to easily distinguishable phenotypes, which impedes 
the identification of the mutant strains by phenotyping. 
Therefore, we aimed to increase the gene editing effi-
ciency of the CRISPR/Cas9 system in P. digitatum in a 
two-stage approach. First, by disrupting genes associated 
with phenotypes that can be easily observed to improve 
the gene-editing protocol in a visual and fast-screening 
manner. And second, by demonstrating the utility of the 
optimized protocol with other genes that are not initially 
associated with visually discernible phenotypes.
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For this purpose, we chose five gene candidates that 
were differentially expressed based on our high-through-
put gene expression studies aimed at elucidating the kill-
ing mechanism of the AFP PdAfpB against the citrus 
postharvest pathogen P. digitatum [16], which are sum-
marized in Table  1. AFPs are small, cationic, cysteine-
rich proteins secreted by ascomycete fungi that stand out 
as promising antifungal biomolecules to be applied in 
agriculture, food and clinic to fight fungal pathogens [29, 
30].

Optimization of CRISPR/Cas9 genome editing in P. 
digitatum through the disruption of genes rendering 
altered conidia pigmentation
Among the genes significantly repressed upon PdAfpB 
treatment were those belonging to the 1,8-dihy-
droxynaphtsalene (DHN)-melanin biosynthesis clus-
ter (Table  1). This cluster was previously characterized 
in P. digitatum [31], describing five genes involved in 
DHN melanin biosynthesis: pksP (PDIG_53730), abr1 
(PDIG_54070), arp1 (PDIG_54090), arp2 (PDIG_54100) 
and ayg1 (PDIG_54110) (Fig. 1A). Mutants of these genes 
render colonies with various degrees of altered conidial 
pigmentation. We targeted two of them, pksP and arp2, 
to allow fast screening of potentially successful CRISPR 
mutants. The pksP is a polyketide synthase that catalyzes 
the conversion of acetyl-CoA and malonyl-CoA to hep-
taketide napthopyrone (YWA1) (Fig.  1B). In contrast, 
arp2 encodes a reductase putatively involved in two dif-
ferent steps of the melanin biosynthetic pathway: con-
version of 1,3,6,8-tetrahydroxynaphthalene (T4HN) to 
scytalone and reduction of 1,3,8-trihydroxy-naphthalene 
(T3HN) intermediate to vermelone (Fig.  1B). Disrup-
tion of pksP and arp2 in P. digitatum causes color change 

from the original green colonies to white (albino) and 
reddish-brown colonies, respectively [31]. Two different 
sgRNAs where designed to target each of these two genes 
(Supp. Table S1) at different locus positions. Their loca-
tion within the gene sequences is shown in Fig. 1C. After 
7 days post-transformation with the episomal self-repli-
cating pLM-AMA15.0 plasmid derivatives, we did not 
detect phleomycin resistant colonies that had incorpo-
rated the plasmid with the expected color-changing phe-
notype in the protoplast transformation plates (square 
plates) (Fig. 1D). Therefore, between 16 and 27 randomly 
selected green colonies (Table  2) were transferred to 
phleomycin-containing P. digitatum Minimal Medium 
(PdMM) plates (see Fig.  1D, red arrows as an example) 
and were allowed to grow for additional 3–5 days at 25 ºC 
(Fig. 1D, round Petri dishes). In the previously reported 
protocol, randomly chosen transformants were picked 
from the transformation plates to selective potato dex-
trose agar (PDA) plates in order to discard false posi-
tive colonies, and after 2 days of incubation, these were 
directly transferred to non-selective PDA plates to accel-
erate plasmid curation [21]. However, the rapid fungal 
growth achieved in complete PDA medium together with 
the short incubation time applied (2 days) resulted in no 
color-changing colonies in this selection step. In contrast, 
with longer incubation times (up to 5 days) in selective 
PdMM, in which the fungal growth rate for P. digitatum is 
substantially reduced, a large number of gene edited col-
onies appeared, which were easily distinguishable from 
the parental-related green phenotype (Fig.  1D, zoomed 
images), highlighting the importance of selecting optimal 
growth media and incubation times for Cas9-induced 
activity. In the case of pksP gene disruption with sgRNA1, 
100% of the strikes performed from the originally 16 
transformed colonies with green phenotype resulted in a 
mixture of easily distinguishable green/white phenotypes 
in the second round of selection (Table  2). Similarly, in 
the case of pksP gene disruption with sgRNA2, 70% of 
the 20 green colonies randomly chosen resulted in mixed 
phenotypes. In the case of arp2 gene disruption with 
both sgRNA1 and sgRNA2, 100% of the randomly chosen 
colonies resulted in mixed green/brownish phenotypes 
after the second round of selection (Table  2). After this 
selection round in PdMM, colonies showing the expected 
phenotypes of altered pigmentation (Fig.  1E) where 
transferred to selective 24-well PDA plates and their 
genomic DNA was isolated and sequenced for molecular 
confirmation (Fig. 1F). Sequencing results demonstrated 
that between 91 and 100% of the sequenced strains had 
nucleotide insertions or deletions within the target gene 
sequences for both sgRNAs (Fig.  1F and Supp. Fig S1), 
resulting in gene frameshifts in most cases (Table 2).

It is noteworthy that the type of mutation incorporated 
after NHEJ seems to be sgRNA-dependent. For example, 

Table 1  Examples of differentially expressed genes in P. 
digitatum after PdAfpB treatment [16]. Gene candidates chosen 
for CRISPR/Cas9 efficiency optimization are highlighted in bold
Gene ID Gene annotation (Predicted) function
PDIG_53730 pksP/alb1 Conidial pigment 

polyketide synthase
PDIG_54070 abr1/brown 1 Conidial pigment biosynthe-

sis oxidase
PDIG_54080 Hypothetical 

protein
Multicopper oxidase

PDIG_54090 arp1 Conidial pigment biosynthe-
sis scytalone dehydratase

PDIG_54100 arp2 Conidial pigment biosyn-
thesis reductase

PDIG_54110 ayg1 Conidial pigment biosynthe-
sis protein

PDIG_68680 dfg5 Cell wall glycosyl hydrolase
PDIG_56860 Glycoside hydro-

lase, family 47
Mannosyl-oligosaccharide 
1,2-α-mannosidase

PDIG_33760 Hydrophobin Hydrophobin
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Fig. 1 (See legend on next page.)
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in case of pskP gene, sgRNA1 led to 75% insertions, while 
sgRNA2 led mostly to gene deletions (70%). In case of 
arp2, the majority of mutations produced by sgRNA1 and 
sgRNA2 were insertions, with 100% and 75% frequency, 
respectively (Table 2).

Targeted mutagenesis via Cas9 is efficient at tem-
peratures of 37 ºC and higher, yet it becomes gradu-
ally impaired at lower temperatures [32]. Therefore, the 
endonuclease activity of Cas9 is dependent on the tem-
perature in which the target organism is growing. The 
optimal growth temperature of P. digitatum is 25 ºC, with 
increasing impaired growth at temperatures above 28 
ºC [4, 33]. Consequently, the low gene editing efficiency 
(10%) previously obtained for this organism [21] could 
be attributed to a low nuclease activity of the Ca9 protein 
at the optimal temperature of this fungus. However, due 
to the sensitivity of P. digitatum to temperatures higher 
than 28 ºC, increasing the incubation temperature was 
not an option to improve the genome editing efficiency 
driven by Cas9. Instead, we decided to increase the time 
the CRISPR/Cas9 machinery containing self-replicative 
plasmids were inside the colonies to theoretically (i) allow 
for greater plasmid copy number within the cells, if pos-
sible, and (ii) give more time for the Cas9 endonuclease 
to generate the DSBs at this sub-optimal temperature of 
25 ºC by changing from PDA-selective plates to PdMM-
selective plates in the subsequent selection steps and by 
increasing incubation time. It is important to note, how-
ever, that the fungal metabolic activity in PdMM might be 
slower than in PDA, and therefore, plasmid copy number 
achieved in transformants grown on PdMM plates does 
not necessarily have to increase despite longer incubation 
times. Additionally, the efficiency of both Cas9 transla-
tion and sgRNA transcription may be influenced by the 
growth media, with selection pressure likely having an 
important role in CRISPR/Cas9 efficiency, as it would 
avoid plasmid curation and, therefore, promote CRISPR/
Cas9 activity. In Alternaria alternata, prolongation of 
the culture time of the transformants on the primary 
transformation plates allowed the development of muta-
tions over time [34], which already pointed to time as a 
key factor for gene editing by CRISPR/Cas9. However, 
in the case of P. digitatum, extending culture time for up 
to 10 days in the transformation plates only resulted in 

colony overgrowth without appearance of mutated non-
melanized conidia (data not shown). In some Aspergilli, 
however, re-inoculation of transformants on selection 
plates after transformation increased the number of col-
ored sectoring colonies, pointing to an increase in the 
CRISPR/Cas9 efficiency that, in any case, was not quanti-
fied [35]. In the case of the pksP and arp2 genes in P. digi-
tatum, just one additional streaking in selective PdMM 
increased the number of mutant colonies, which could 
be directly identified on the plates. Additionally, these 
strains underwent plasmid curation after four streaks on 
non-selective plates as previously described [21], losing 
their ability to grow in the presence of phleomycin, and 
with no phleomycin resistance cassette being detectable 
in their genomic DNA by PCR (Supp. Fig. S2).

Validation of the optimized CRISPR/Cas9 protocol by 
disrupting genes that are not associated with visually 
discernible phenotypes
In the above-mentioned experiments, despite the 
increase in the number of pksP and arp2 edited strains 
obtained, the amount of still non-edited colonies (green 
colonies) in the streaks was significantly higher than that 
of the edited ones (Fig. 1D). In order to further increase 
the possibilities to choose correct gene-edited strains in 
the case of no visually recognizable phenotypes, further 
selection steps on selective PdMM plates were applied 
under the hypothesis that additional culture rounds 
would further increase the editing efficiency driven by 
Cas9.

Apart from the above mentioned DHN melanin bio-
synthesis-related genes, three other genes were selected 
from those significantly repressed upon PdAfpB treat-
ments in P. digitatum. PDIG_68680 is an orthologue of 
the Saccharomyces cerevisiae DFG5 gene, which encodes 
a glycosylphosphatidylinositol (GPI)-anchored mem-
brane protein required for cell wall biogenesis [36]. 
PDIG_56860 encodes an uncharacterized putative man-
nosyl-oligosaccharide 1,2-α-mannosidase in P. digitatum. 
Finally, PDIG_33760 encodes a hydrophobin protein 
with 74.5% sequence identity to the Aspergillus fumiga-
tus spore hydrophobin RodA and a 57.1% identity to the 
characterized hydrophobin A of the phytopathogenic 
fungus Penicillium expansum, whose single disruption 

(See figure on previous page.)
Fig. 1  Application of CRISPR/Cas9 to target pksP (PDIG_53730) and arp2 (PDIG_54100) genes of the DHN-melanin biosynthetic pathway. (A) Genomic 
organization of the DHN-melanin biosynthesis gene cluster in P. digitatum. (B) DHN-melanin pathway predicted for P. digitatum. (C) Schematic representa-
tion of sgRNA target sites designed for the disruption of pksP and arp2 genes by CRISPR/Cas9. (D) Transformation results of P. digitatum after growth in the 
initial PdMM selection plate (left) and subsequent striking of transformed colonies in selective medium (right). Red arrows represent examples of green 
colonies that were randomly chosen from the primary transformation plates. Black and brown arrows point to albino and brownish colonies appearing 
after colony streaking, respectively. Green arrows point to non-edited colonies. (E) Colony morphology of parental wild-type P. digitatum (PHI26 strain) 
and two individual disruption mutants (ΔpksP and Δarp2) after 5 days of growth on solid PDA plates. (F) Nucleotide sequence alignments of Sanger 
sequencing results for pksP and arp2 mutants compared to the parental sequences. Multiple sequence alignments were effectuated with the Geneious 
Aligner (Geneious Prime® 2023.0.4). Protospacer adjacent motif (PAM) sequences are underlined and 20-bp protospacers are indicated in blue (sgRNA 1) 
and green (sgRNA 2)
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rendered a loss in fungal hydrophobicity and reduced 
conidia dispersion capability [37]. Initially, disruption 
of none of these genes has any recognizable phenotype 
change, contrary to pksP and arp2.

In this case, one sgRNA was designed to target each 
individual gene, and two (instead of one) additional 
steps of transformant selection in PdMM plates were 
performed (Fig.  2A). Twelve isolated colonies com-
ing from the primary transformation plates were ran-
domly chosen and streaked into phleomycin-containing 
plates up to two times. After two rounds of selection, 
two isolated colonies from each streak were transferred 
to phleomycin-containing 24-well PDA plates. Genomic 
DNA of a total of 24 monosporic candidates for each 
gene (PDIG_68680, PDIG_33760, PDIG_56860) was 
isolated and molecularly analyzed by Sanger sequenc-
ing (Fig. 2B-D) (Supp. Fig. S3). The percentage of editing 
efficiency was calculated for each of these three genes 
(Fig.  2E), and the type of mutations arising after DSBs 
and NHEJ-mediated repair was shown (Fig.  2F). In the 
case of PDIG_68680, around 54% of the colonies (13 out 
of 24) showed nucleotide insertions or deletions within 
the target gene sequence (Fig. 2B, E) generating in most 
of the cases (84.6%) frameshift mutations (Fig.  2F). For 
PDIG_33760, around 79% of the colonies showed gene 
editing within the target sequence (Fig.  2C, E) gener-
ating frameshift indels in approx. 60% of the strains, 
although in-frame indels (≈ 20%) and long indels (≈ 10%) 
were also found (Fig.  2F). A large insertion of > 50  bp 
was only identified in one mutant of PDIG_33760, show-
ing a 62  bp insertion of a G-patch DNA repair protein 
gene (XM_014682453.1) and its upstream genomic 
sequence acting as a pseudo-donor template. Finally, for 
PDIG_56860, about 83% of the colonies showed nucleo-
tide indels within the target gene (Fig. 2D, E) with frame-
shift indels accounting for 90% of the mutations observed 
(Fig. 2F). Once the edited mutants were identified, these 
strains were plated on non-selective plates to allow plas-
mid curation. After four streaks on non-selective plates, 

the strains lost their ability to grow in the presence of 
phleomycin. The absence of the phleomycin resistance 
cassette present in the AMA1 plasmids was additionally 
assessed by PCR of genomic DNA of the edited mutants 
(Supp. Fig. S2). Negative PCR results showed that the 
phleomycin resistance cassette was not integrated into 
the genome. However, we cannot discard the possibil-
ity that other (partial) integrations of the AMA1 vectors 
could have randomly occurred, which would have also 
resulted in the same negative PCR results. In this case, 
whole genome sequencing (WGS) would be the approach 
to search for the presence of partial fragments of the vec-
tors genome-wide. Nevertheless, it is important to high-
light that integration of AMA1-based plasmids is strange. 
No AMA1-based plasmid integration has been reported 
for several Penicillium species e.g., Penicillium chrys-
ogenum [38], P. subrubescens [39] or P. expansum [21]. 
Moreover, in a recent study performed in A. niger, more 
than 90 CRISPR/Cas9-edited strains transformed with 
AMA1-derived plasmids were sequenced through WGS 
to find possible off-targets and plasmid integrations after 
strain curation [40]. In this study, no plasmid integra-
tions were found regardless of their Non-Homologous 
End-Joining (NHEJ)- proficient or deficient genetic back-
grounds, which would further support our results. Thus, 
since no plasmid integration was identified despite apply-
ing two additional rounds of selection in the presence 
of the antibiotic, this suggests that in the case of P. digi-
tatum the probability of integration of pLM-AMA15.0 
plasmid derivatives into the genome is very low, which 
greatly benefits their use in this organism.

Conclusions
With this study, we demonstrate that additional rounds 
of transformant streaks under selection pressure condi-
tions in a medium that promotes a slower growth rate 
of the fungus, as it is the case of PdMM, with increased 
incubation times improve CRISPR/Cas9 gene editing 
efficiency in P. digitatum from the previously reported 

Table 2  CRISPR/Cas9-mediated genome editing of target genes PDIG_53730 and PDIG_54100.
Target gene sgRNA Differential phenotype 

color after one round of 
selection (%)

Editing ef-
ficiency (%)

Type of mutation Mutation
frequency
(%)

Indel size
frequency 
(%)

PDIG_53730 (pksP) 1 16/16 (100%) 12/12 (100%) Insertion 9/12 (75%) + 1 bp (75%)
Deletion 3/12 (25%) -1 bp (16.6%)

-2 bp (8.33%)
2 14/20 (70%) 10/11 (91%) Insertion 3/10 (30%) + 1 bp (30%)

Deletion 7/10 (70%) -1 bp (50%)
-3 bp (10%)
-11 bp (10%)

PDIG_54100
(arp2)

1 17/17 (100%) 4/4
(100%)

Insertion 4/4 (100%) + 1 bp (100%)
Deletion 0/4 (0%) -

2 27/27 (100%) 4/4
(100%)

Insertion 3/4 (75%) + 1 bp (75%)
Deletion 1/4 (25%) -6 bp (25%)
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Fig. 2 (See legend on next page.)

 



Page 8 of 11Ropero-Pérez et al. Fungal Biology and Biotechnology            (2024) 11:8 

10% to up to 83% through the recyclable AMA1-based 
pLM-AMA15.0 plasmids. This relevant improvement of 
the editing efficiency together with the recyclable nature 
of the plasmid and selection used will allow for the effi-
cient generation of P. digitatum single and -most impor-
tantly- multiple mutants aimed at studying, for instance, 
virulence gene functionality or antifungal resistance 
mechanisms without the limitation of selection markers. 
Moreover, the approach described in this study might 
help increase CRISPR/Cas9 gene editing efficiencies in 
other economically relevant Penicillium species for which 
the editing efficiency through similar CRISPR/Cas9 sys-
tems has been reported to be low, as it is the case of the 
enzyme producer Penicillium subrubescens [39] or the 
phytopathogen P. expansum [21], and likely in other rel-
evant fungal species from genera other than Penicillium.

Methods
Strains and growth conditions.

P. digitatum CECT 20796 (isolate PHI26) [3] was 
used as the parental strain. This strain and the transfor-
mants thereof generated through CRISPR/Cas9 technol-
ogy were routinely cultured on PDA plates (Difco-BD 
Diagnostics) for 5–7 days at 25  °C. Conidia were har-
vested from the PDA plates with a fire-sterilized metal 
spatula, dispersed in sterile milli-Q H2O and concentra-
tion was determined and adjusted using a hemocytom-
eter. Growth of monosporic transformants was analyzed 
depositing 5 µL of conidia suspension (5 × 104 conidia/
mL) in the center of PDA plates and colonies were ana-
lyzed by visual inspection. Vectors generated in this 
study were propagated in Escherichia coli JM109 grown 
in lysogeny broth (LB) medium [41] supplemented with 
25 µg/mL chloramphenicol (Sigma-Aldrich) at 37 ºC.

Generation of DNA constructs.
Genes of interest (Table 1) were screened for CRISPR 

target sites using the Geneious Prime software version 
2023.0.4 (https://www.geneious.com/), and the available 
P. digitatum CECT 20796 annotated genome [3, 16]. The 
sgRNA sites were specifically designed to target genes 
PDIG_53730 (pksP), PDIG_54100 (arp2), PDIG_68680 
(dfg5), PDIG_33760 (rodA) and PDIG_56860, consider-
ing NGG as the protospacer adjacent motif (PAM) (Supp. 
Table S1). The 20 bp spacer sequences were selected con-
sidering no off-targets and high on-target activity pre-
dicted by the experimentally validated model described 
in [42].

Derivates of the self-replicative CRISPR/Cas9 plas-
mid pLM-AMA15.0 (AddGene ID #138,944) to tar-
get each gene were generated as described in [43]. The 
20 bp spacer sequence defining each CRISPR target site 
was supplied as a separate DNA piece together with the 
hammerhead ribozyme (HH) sequence. DNA pieces 
were generated by PCR reaction (NZYTaq II, NZYTech®) 
with two overlapping primers and the resulting ampli-
cons were purified (Wizard® SV Gel and PCR Clean-Up 
System, Promega). The fragments were then cloned into 
the pLM-AMA15.0 plasmid through a ‘one-pot’ Golden 
Gate restriction-ligation reaction [44] with BsaI restric-
tion enzyme (BsaI, ThermoFisher scientific) and T4 DNA 
ligase (Promega) with a vector/insert ratio of 1/100.

Protoplast generation, fungal transformation and 
mutant confirmation.

The transformation protocol was optimized based on 
the previously described method in [21] (Supp. Table S2). 
The optimized protocol for protoplast generation, trans-
formation and transformant selection is summarized in 
Fig. 3 (main changes are highlighted in yellow boxes). For 
protoplasts generation, freshly harvested spores obtained 
from a 5-day old PDA plate at a concentration of 2 × 106 
conidia/mL were inoculated in 2  L plastic Erlenmeyer 
flasks containing 200 mL of P. digitatum transformation 
medium (PdTM) and maintained at 25  °C and 200  rpm 
for 48  h. Then, the culture was filtered through sterile 
Miracloth, washed with 0.6 M MgSO4 and dried by gentle 
squeezing between two sheets of UV-sterilized Miracloth 
paper. Resulting mycelia were resuspended in PS buffer 
with a ratio of 6.5 mL PS/g mycelium and mixed with 
the VinoTaste® Pro lysing enzyme (Novozymes) (0.5  g 
enzyme/g mycelium in 15 mL PS). The mix was incu-
bated in a rotary shaker at 30  °C and 80 rpm for 2–3 h, 
until rounded, non-extruded protoplasts were easily 
identified under the microscope. Protoplast suspensions 
were then placed on ice and filtered through sterile dou-
ble-layer Miracloth paper. Cold SC solution was added 
to the protoplast suspensions to reach 45 mL of volume. 
Protoplasts were centrifuged 1700 ×g for 10 min at 4  °C 
and the pellet was washed with 10 mL solution B. The 
protoplast suspension was centrifuged again 750 ×g for 
10 min at 4 ºC and it was finally re-suspended in solution 
B to reach a concentration of 1 × 107 protoplasts/mL.

For transformation, 200 µL of protoplasts (1 × 107 pro-
toplasts/mL) were mixed with 50 µL of solution C and 
a maximum of 10 µL DNA solution containing 3  µg of 

(See figure on previous page.)
Fig. 2  Application of CRISPR/Cas9 to target genes with no visual phenotype changes associated to their disruption (PDIG_68680, PDIG_33760 and 
PDIG_56860). (A) Representative images of the optimized transformation protocol steps followed for CRISPR/Cas9 editing and sequence confirmation. (B, 
C, D) Multiple sequence alignment of representative ΔPDIG_68680, ΔPDIG_33760 and ΔPDIG_56860 mutants aligned against the parental non-edited 
sequences. Alignments were effectuated with the Geneious Aligner tool (Geneious Prime® 2023.0.4). Indels are highlighted in yellow (insertion) and grey 
(deletion) and a long insertion (> 50 bp) is indicated in orange. PAM sequences are underlined and the 20-bp protospacers are marked in blue. (E) Bar plot 
representing the gene editing efficiency (%) for each gene. The number of edited and un-edited transformants are indicated in each column (n = 24). (F) 
Bar plot showing the type of mutations identified for each targeted gene. The total number of transformants evaluated is indicated in each bar

https://www.geneious.com/
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each pLM-AMA15.0 plasmid. The mix was incubated on 
ice for 20 min. After incubation, 2 mL of solution C were 
added and, after 5 more min of incubation, 2 mL of solu-
tion B were poured to the protoplast suspension. Finally, 
protoplasts were spread over phleomycin (BleO)-con-
taining square plates (35 µg/mL) of P. digitatum minimal 
medium sucrose (PdMMS) for regeneration and selec-
tion. For each experiment, two replicates were performed 
for each target gene. Additionally, untransformed proto-
plasts were spread over selective and non-selective plates 
as negative and regeneration controls of protoplast’s 
viability, respectively. All plates were incubated at 25 ºC 
until sporulated colonies were observed (between 5 and 
7 days).

Transformants were picked and streaked in selective 
PdMM plates supplemented with phleomycin (35  µg/
mL) for one (in the case of target genes with associated 
phenotypical changes) or two rounds (for genes without 
visual phenotypes). Single colonies were finally picked 
and transferred to 24-well PDA selective plates and 
genomic DNA was isolated for each colony (NZY Tissue 
gDNA Isolation kit, nzytech). Mutants were confirmed 
by PCR amplification (BIOTAQ™ DNA Polymerase, Bio-
line) and subsequent Sanger sequencing using primers 

indicated in Supp. Table S1. Multiple sequence align-
ments against parental gene sequences were effectuated 
with the Geneious Aligner (Geneious Prime® 2023.0.4) to 
confirm gene editing. Finally, the verified CRISPR/Cas9 
mutants were streaked on non-selective PDA plates for 
at least four rounds to cure the strains from the plasmid. 
Curation was confirmed by a last streak in selective PDA 
plates to verify their inability to grow in the presence of 
the phleomycin antibiotic and by PCR from genomic 
DNA of the cured mutants using specific oligonucle-
otides to amplify the phleomycin cassette present in the 
plasmid (Supp. Table S1).
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